内容目录
Language:
Black Box
Description
Black Box 代表数据库。(开始为空)
有2种操作 ADD (x): 向库添加一个x; GET: 第i次执行时输出数列中第i大的数. Example 1 N Transaction i Black Box contents after transaction Answer (elements 升序排列) 1 ADD(3) 0 3 2 GET 1 3 3 3 ADD(1) 1 1, 3 4 GET 2 1, 3 3 5 ADD(-4) 2 -4, 1, 3 6 ADD(2) 2 -4, 1, 2, 3 7 ADD(8) 2 -4, 1, 2, 3, 8 8 ADD(-1000) 2 -1000, -4, 1, 2, 3, 8 9 GET 3 -1000, -4, 1, 2, 3, 8 1 10 GET 4 -1000, -4, 1, 2, 3, 8 2 11 ADD(2) 4 -1000, -4, 1, 2, 2, 3, 8 ADD 和 GET 操作数不超过 30000 . 操作描述如下: 2. u(1), u(2), ..., u(N):GET的询问时间,第i个GET将在第u(i)读完后执行.样例中 u=(1, 2, 6, 6). Input
第一行: M, N, 第二行序列A, 第三行序列u.
Output
第i行输出第i个GET的输出
Sample Input 7 4 3 1 -4 2 8 -1000 2 1 2 6 6 Sample Output 3 3 1 2 Source |
此题可用二叉搜索树解决。
二叉搜索树的建立:每拿到一个元素,比根小放在左根,比根大放在右根,否则放根上。
t.weight 表示结点上有几个数, t.key表示数的值 ,t.size表示以该点为根的树上有多少数
重点是左旋和右旋!
2个注意:注意把a的父亲结点改掉,注意把a,b的父亲结点改掉
下图转载自http://dongxicheng.org/structure/treap/
#include<cstdio> #include<cstdlib> #include<cstring> #include<cmath> #include<iostream> #include<algorithm> #include<functional> using namespace std; #define MAXM (30000+10) #define MAXN (30000+10) struct tree_node { int key,fim,size,weight; tree_node *left,*right,*father; int l_size() { return (left==NULL)?0:(left->size); } int r_size() { return (right==NULL)?0:(right->size); } void count_size() { //size=(left==NULL)?0:(left->size)+(right==NULL)?0:(right->size)+weight; size=l_size()+r_size()+weight; } tree_node():key(0),fim(rand()),size(0),weight(0){left=right=father=NULL;} tree_node(int _key):key(_key),fim(rand()),size(1),weight(1){left=right=father=NULL;} }; tree_node* newnode(int key) { tree_node* p; p=new tree_node; *p=tree_node(key); return p; } struct Treep { tree_node *root; Treep(){root=NULL;} void left_rotaue(tree_node *&a) { tree_node* b=a->right; a->right=b->left;if (a->right!=NULL) a->right->father=a; b->left=a;b->father=a->father;a->father=b; a->count_size(); b->count_size(); if (b->father) { if (b->father->left==a) b->father->left=b; else b->father->right=b; } a=b; } void right_rotaue(tree_node *&a) { tree_node* b=a->left; a->left=b->right;if (a->left!=NULL) a->left->father=a; b->right=a; b->father=a->father; a->father=b; a->count_size(); b->count_size(); if (b->father) { if (b->father->left==a) b->father->left=b; else b->father->right=b; } a=b; } void insert(int key) { if (root==NULL) {root=newnode(key);return;} tree_node *now=root; while (1) { now->size++; if (key==now->key) {now->weight++;break;} else if (key<now->key) { if (now->left==NULL) {now->left=newnode(key);now->left->father=now; now=now->left; break;} else now=now->left; } else { if (now->right==NULL) {now->right=newnode(key);now->right->father=now; now=now->right; break;} else now=now->right; } } for (;now!=root&&now->father->fim<now->fim;) { if (now->key<now->father->key) {now=now->father; right_rotaue(now);} else {now=now->father; left_rotaue(now); } if (now->father==NULL) root=now; } } int gets(int k) { tree_node* now=root; while (1) { if (now->l_size()>=k) {now=now->left;} else if (now->l_size()+now->weight>=k) return now->key; else {k-=now->l_size()+now->weight; now=now->right;} } } void print(tree_node *now) { if (now->left!=NULL) { cout<<"( "; print(now->left); cout<<" )"; } cout<<" "<<now->key<<" "; if (now->right!=NULL) { cout<<"( "; print(now->right); cout<<" )"; } } }t; int n,m,a[MAXN],u[MAXM]; int main() { // freopen("poj1442.in","r",stdin); cin>>n>>m; for (int i=1;i<=n;i++) cin>>a[i]; for (int i=1;i<=m;i++) cin>>u[i]; for (int i=1,j=1;i<=n;i++) { t.insert(a[i]);//t.print(t.root);cout<<endl; while (j<=m&&i==u[j]) {cout<<t.gets(j)<<endl;j++;} } return 0; }