Language:
Fibonacci
Description Fibonacci integer sequence指 F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. eg: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, … Fibonacci 的矩阵乘法求法如下 . Given an integer n, 求 Fn mod 10000. Input 多组数据,每行一个 n (where 0 ≤ n ≤ 1,000,000,000). 数据以 −1 结尾. Output 对每组数据打印一行 Fn mod 10000). Sample Input 0 9 999999999 1000000000 -1 Sample Output 0 34 626 6875 Hint As a reminder, matrix multiplication is associative, and the product of two 2 × 2 matrices is given by . Also, note that raising any 2 × 2 matrix to the 0th power gives the identity matrix: . Source |
正宗矩阵幂练手题。
做了这题就差不多理解矩阵乘法了。
补充:递归一般能用矩阵乘法,如f[i]=g(f[i-1],f[i-2])...
但是规划不行,如f[i]=max(....)
#include<cstdio> #include<cstring> #include<algorithm> #include<iostream> #include<cstdlib> #include<functional> using namespace std; #define MAXN (1000000000) #define F (10000) struct M { int a[3][3]; M(int i){a[1][1]=a[1][2]=a[2][1]=1;a[2][2]=0; } M(){memset(a,0,sizeof(a)); } friend M operator*(M a,M b) { M c; for (int i=1;i<=2;i++) for (int j=1;j<=2;j++) for (int k=1;k<=2;k++) { c.a[i][j]=(c.a[i][j]+a.a[i][k]*b.a[k][j])%F; } return c; } friend M pow(M a,int b) { if (b==1) { M c(1); return c; } else { M c=pow(a,b/2); c=c*c; if (b%2) return c*a; return c; } } }; int n; int main() { while (cin>>n&&n!=-1) { if (n==0) printf("0n"); else { M a=pow(M(1),n); printf("%dn",a.a[1][2]); } } }